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Fibonacci and Nonadjacent Numbers

On the Characterization of Fibonacci Numbers as Maximal

Independent Sets of Vertices of Certain Trees.
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Athens, Georgia, 30602 U.S.A.

Abstract

\--Fibonacci numbers are identified for the first time as maximal independent

sets of vertices of certain caterpillar trees. Their relation to king patterns of

certain classes of polyomino graphs as well as polyhex graphs is illustrated.
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1. Introduction

More than a decade ago Hosoyal defined the concept of nonadjacent numbers

in chemistry. Thus for a connected nondirected simple graph, G, the quantity

p(G,k) is defined to be the number of ways of choosing k disconnected lines from

graph C with p(G,O) being taken to be unity. The Z-counting polynomial, H(G;x)

is defined as

m
H(G;x) = ' p(C,k) xk (1)

k=0

where m is the maximum number of k. The Z-index is the sum of the p(G,k)

numbers, i.e.,

Z(G) = H(G;1) (2)

The above topological index was found to be applicable in many different areas

including chemistry, mathematics, dimer statistics, and informatics. 2 The recent

revival of interest in graph theory led to a natural extension of the p(G,k) numbers

to include other nonadjacent mathematical objects abstracted from molecular

graphs. Thus when the concept is applied to benzenoid hydrocarbons 3 p(G,k)

becomes r(B,k) i.e. the number of selections of k nonadjacent resonant sextets

from the benzenoid graph B. In Clar sextet theory 4 the nonadjacent concept

has been extended to sets of nonadjacent vertices o(C,k) chosen from the

corresponding Clar graph5 , C. Further, the latter concept was also recently

applied6 to king polynomials of polyomino graphs. 7 In addition the nonadjacent

concept relates to rook theory 8 . Thus, ther? is a one-to-one correspondence

between labelled bipartite graphs with a + b vertices and a che s board, R, with
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a rows and b columns such that p(G,k) - p(R,k) where the latter function counts

the number of ways in which one can arrange k non-attacking rooks on R, taking

0 (R,o) = 1.

Some interesting relations arise for certain types of graphs. Thus the set

{ Z(G n = Ln) } , where Ln is a path on n vertices is the set of Fibonacci numbers, 9

{ Fn}, defined by

(n/2] (k
Fn = ( k(

k =0

while the set {Z(Gn = Cn)}, Cn being a cycle on n vertices, generates the Lucas

sequence 9 , { Ln }, where

Ln = Fn + Fn.2 ; n>2 (4)

The binomial functions of Eq. (3) are coefficients of the Chebyshev polynomials10 .

Because the Fibonacci numbers are well studied any relations to other fields

such as chemistry or physics should be interesting. Two classical relations to

the Fibonacci numbers are known in chemistry:

(1) The numbers of Kekul6 structures, K, of the zigzag nonbranched benzenoid

hydrocarbons (phenanthrene, chrysene, picene, fulminene,(benzotc]picene), ... ) are

defined by1 1

Kn = Fn+1 (5)

n, is the number of rings in the polyhex graph.

The analogous relation in statistical physics is12

K(2xn) = Fn (6)



where K(2xn) is the number of perfect matchings in a (2xn) rectangular lattice.

(2) Let fi(n) be the number of permutation integrals 1 3 involving i rings in a

nonbranched zigzag polyacene containing n rings (observe that i = E Ri, where

Ri is a conjugated circuit over i rings1 4 ), then 15

Y'i(n) = "i-1 (n-1) (7)

0
Y i(n) = F 0-k Fk-1

k=1

where 0 = n+1-i.

Maximal Independent Sets

The vertices of a graph can be partitioned into a finite number of sets. A

set of vertices in which no two vertices are adjacent is called an independent

set of vertices. An independent setof vertices {V(r)} in G is said to be maximal 16

if every vertex of G {V(r)) is adjacent to at least one of the r vertices of {V(r)) .

Fig. 1 shows three graphs C1 , Z2 andC 3 arbitrarily labelled as shown. There

are seven maximal independent sets of vertices insC1 , viz., {1,4}, {1,5) , { 1,6 },

{ 2,4}, {2,5}, {2,6), {3,5} and {3,6 }, while the vertices of C2 are partit~oned

into five maximal independent sets: { 31, {1,4}, {1,5} , {2,4}, {2,5). For £3

there are only three such sets: {2 1, {4) and {1,3). Actually C 1 and .C2 are

theClar graphs5 ,1 7 of two nonbranched systems whose ring-annellation18 sequences

are respectively L2 A2L 2 and L 2AL 2 while C 3 is the Clar graph of pyrene. In

fact, quite recently Herndon and Hosoya 1 7 , 19 , 20 identified the number of Clar

structures 1 7 of a benzenoid hydrocarbon as the number of maximal independent

sets of vertices in the corresponding Clar graphs.



The Comb Tree Graphs

We consider a special type of tree formed by the addition of a single

(monovalent) vertex to each of the n vertices of a path, Ln. The resulting

caterpillars21 containing 2n vertices are also known as comb trees. The vertices

of the original path moiety of such trees will be called root vertices. A comb

tree will be given the symbol Tn(1,1,..., 1) Tn,1. An arbitrary labelling of the

set of vertices {V(r)}E Tn, 1 is shown below

n+1 n+2 n+3 2n-i 2n

1 2 3 n-I n

Let us consider the maximal independent sets of vertices of some of the lower

members of comb trees.

V(T 1 , 1 ) D { 2 }; {1 } = Vm(T1,1)

V(T 2 , 1 ) D {3,4}; {1,41, {2,3} =Vm(T2,1)

V(T 3 , 1 ) - {4,5,6}; {1,5,6 1; {2,4,6); {3,4,5}; {1,3,5} =Vm(T3,1)

V(T4,1) D. { 5,6,7,8}; (1,6,7,8} ;{2,5,7,8J ;

{3,5,6,8}; { 4,5,6,7}; {1,3,6,8}

{1,4,6,7}; {2,4,5,7} = Vm(T4,1)

V(T5 , 1) D { 6,7,8,9,10 }; {1,7,8,9,10}; {2,6,8,9,10};

{ 3,6,7,9,,10} ; {4,6,7,8,101 ;{ 5,6,7,8,9,101

f 1,7,3,9,10 1; {1,4,7,8,10} ; ( 1,5,7,8,9);

f 2,4,6,8, 10 }; {2,5,6,8,9} ; 3,5,6,7,91

f1,3,5,7,91 = Vm(TS,1).



where V(Tn,1) is the total set of vertices of Tn,1 and Vm(Tn,i) is a subset of

it including all the maximum independent sets in Tn,1. Let N(V(Tn,l)) -- Cn be

the number of such sets. We observe the following results:

C1 = 2, 2 = 3, 3 = 5, C4 = 8, C5 = 13; C3 = C1 + C2; 44 = 43 + 2;

45 = 44 + 43.

which reminds us of the Fibonacci numbers F 2, F3 , F4 , F5 and F6 respectively.

Actually the above set counts recur in the following general way

n = Cn-1 + 4n-2 (8)

where

;n = Fn+i (9)

There are two ways of proving (8) and (9).

A. Graph-theoretical reasoning

Define the function f such that f:Vm(Tn,l) = Vm(Tn,1) where

V m(Tn,1) = {Vi/viE Vrmr n,1); i (1,2,...,n); t; (n+1, n+2,...,2n)}

where v, is a vertex whose label is i. Therefore the function f maps the set

Vm(Tn, 1 ) into a set of vertices containing only root type vertices. The resulting

initial sets are:

4..



Vm(T2,1) {9 {'1 {i;2}

Vm(T3,1) 10)~ ; ill; f2}; f3}; {1,3}

Vm(T4,1) ill ; 1; {2); {3}; f14; {1,3}; {1,4 {2,4}

VM(T5,1) =9 {}; {111; {21; 131; 141 15}

f2,5}; {3,51; {1,3,51.

In general one can then write:

VM(Tn,1)

r1,3'; 1,5); {.;2,41; {2,5}; ... ; i,i+2}

{ 1, 3,5} {j.. I; j+2; j+4}; ..

{ k, k +2, k +4, k +6, ... I

The cardinalities of the above sets are nothing else but the independence numbers5

of paths Ln. Alternatively they are simply the k-matchings of Ln+l (observe

that Ln is the line graph 2 2 of Ln+1). The latters are indeed the graphical

representations of the Fibonacci numbers9 and since the f function is an injective

(i.e. one-to-one) mapping of Vm(Tnl) -V(Tn,l) relations (8) and (9) become

immediate.

The above ideas lead to the more general caterpillar



Tn j I

Obviously,

r(Tn,j) = (Tn,i) ; j > 1 (10)

This is because

Vm(Tn,j) = Vm(Tn, 1); j > 1

Note, however, that when i = 0 the Fibonacci recursion is lost 1 7 ,20 .

B. Coloring method

Another method of proving the above result (Eqns. 8,9) uses a special coloring

scheme. Thus the vertices of a Tn,j , (j>l); are colored in black and white such

that (i) no two black vertices are adjacent and (ii) every white vertex is adjacent

to at least one black vertex. The resulting colorings then correspond to maximal

independent sets of vertices. For simplicity these indices are illustrated using

Tn,2 - T. but the theory can ge generalized to Tn,j.

Lemma 1

T1,2 s T1 generates two colorings, viz., a ani :

e.

LIP.
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a 1

The "allowed" colorings of T2 can be identified from lemma 1 and rules i-ii as:

(l ) (2) 3

All colorings of T3 can be obtained by connecting one of the root vertices of

(1), (2) and (3) to the root vertices of a and/or 8 . However, because of (i), the

coloring (1a) is not allowed and thus T3 has 3x2-1 = 5 colorings. Similarly the

colorings of Tn can be obtained from those of Tn.1 and the set [oe,,j

Theorem 1

Let Cn be the number of colorings of Tn. Let the number of colorings in a

given set which contains a black root vertex at one (arbitrarily the right) end

of the tree be 8 n.

Then

n= en+2 (11)

,J * 9! .. . ~~~. ° - U, '*%* " I -. " % m'm '



Proof

The set { n+2I is a subset of the set of colorings fr n+2 } in which all rcot

vertices at the (right) end are black. Now, because of (i), in any member of

{Sn+2}the root vertex adjacent to the one at the right end, i.e. the (n+1)th vertex

is necessarily white and therefore the remaining n vertices must generate the

set { n}, i.e. {n}E { +2}, and Eq. (11) is proved

Theorem 2

en+2 = n+1 + B n (12)

Proof

Let wn be the number of colorings in {An} in which the (right) end root vertex

is white. Obviously6 n + wn = Cn-

Now from rule (i) and lemma 1:

n+1 2 'n-Sn

and

wn = 6n+1 =n n

i.e. n = En + En+1 = ;n+2

Eqs. (11) and (12) lead to Eqs. (8) and (9).



Coloring polynomial

A counting coloring polynomial, E(Tnj;x) is conveniently defined by

m
(Tnj;x) Y O(r)xr (13)

r

where o (r) is the number of colorings of Tnj containing r black vertices and

m is the maximum value of r. Then i&(Tn,j;l) S'n. Inspection of the first few

coloring polynomials of any Tn j , j>l, induces Eq. (14), viz.,

[n/2] (n xmn(m 1 )k (14)
E(Tn,j;x) = k

k=O

As a corollary when j=1 the above function becomes simply a monomial in x.

A Special Class of Benzenoid Hydrocarbons

Figure 2 shows a homologous series of benzenoid hydrocarbons denoted as

B(Tn,1)'s. The number of Clar structures in which maximum numbers of hexagons

are assigned to have resonant sextets of this series conforms to Eqs. (8) and (9).

In principle homologation can extended infinitely, however the graph above the

B(T 6 , 1 ) polyhex graph is no long planar. It is interesting to notice that

D(B(Tn,i)) = Tn,1

where D(G) is the dualist graph 2 3 of G.

On King Patterns

Motoyama and Hosoya 7 were the first to define king polynomials and king

,Lt



patterns for lattices and polyomino graphs and showed their potential in dimer

statistics and the problem of Kekul) count in chemistry. Balasubramanian and

Ramara 6 demonstrated recently the equivalence between king polynomials and

what they called color polynomials6 of the dualist graphs of the appropriate

lattice type. Fig. 3 shows a special type of polyomino which corresponds to Tn,2.

But extension to any Tn,j is possible. Their king patterns are Fibonacci numbers.

Correspondence with king pattern7 , domino pattern7 and the matching patternl, 2 4

A king pattern, { K ), is simply a way of placing kings (circles) on chessboard

so that no two kings can take each other. A Kekul6 pattern (or dimer pattern),

"I. {M }, can be generated by identifying the cells in the chessboard that contain

kings as the vertical bonds in the dimer pattern and the empty cells as horizontal

bonds (c.f. Fig. 4). A "domino pattern", (DI , can also be obtained from the dimer_%

Nwp .pattern by paving horizontal and vertical rectangles which correspond to horizontal

V and vertical dimers in the dimer pattern. These relations are depicted in Fig.

4. The set { } is nothing else but the dualist graphs2 3 corresponding to the
V .

modified polyominos, { P }. Hence one can define two rules of placing kings

(circles) in {P} analogous to coloring rules (i), (i0, viz.,

(i') No two i, ings are allowed to occupy adjacent cells.I (ii') Every empty cell is adjacent to at least one occupied cell.

The resulting patterns generate Fibonacci numbers. The last set in Fig. 4, L 1,

shows the corresponding matchings in path L 4. The following interesting relation

is observed. Let d (K i I be the dualist graph2 3 of a member K, from set ,K !,

and L Li ) be the line graph2 5 of the corresponding member L,, then

.~- V d)K1 L!L, ' .L13)

-"
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The last relation is significant since it is well known that the matching polynomials

of the paths may be written as Chevyshev polynomials26 in (x/2).

Conclusion

Fibonacci numbers have been identified for the first time as maximal

independence sets of vertices of certain caterpillar trees. Mappings of such

sets to well known topological functions such as perfect matchings of a path

as well as certain king patterns are discovered.
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Fig. Legends

Three labelled (Clar) graphs.

Fig.

A homologous series of benzenoid hydrocarbons. The Clar counts, C , of the

individual members are Fibonacci numbers i.e. (B(Tj, 1)) = F j+ 1 .

A homologous series of "bidentate" polyomino graphs. Every graph corresponds

to a caterpillar tree Tn,2, n = 1,2,3,4,5 .... Relation to other objects is shown

in Figure 4.

Fibonacci colorings of T2 , 2 and the corresponding patterns in chemistry and

physics. The set { K} is the king pattern, {M} is the dimer pattern, {D} the

domino pattern and {P} is a special polyomino pattern. The set { L } is the

matchings of L4 .
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